’******************************************************
angle1 = (AngCR * (PI / 180)) ’..........................................Converting Degrees to Radians
a = (CrankR * SIN(angle1)) ’..............................................the a length of Triangle of Crank Swing
b1 = (CrankR * COS(angle1))’............................................b length of Triangle of Crank Swing
xC(i%) = xCenter1 + a ’...................................................X coordinate of Crank Swing
yC(i%) = yCrosshair2 - b1 ’...............................................Y coordinate of Crank Swing
b2 = yCrosshair2 - b1 - yCrosshair1 ’..................................Triangle in Square Defined
c2 = SQR(a ^ 2 + b2 ^ 2) ’................................................Side of Top Triangle
C3= c2 / 2 ’..................................................................Half of Side/Top Triangle
angle2 = (CrankR * SIN(angle1)) / c2’...................................Opposite Angle
W = SQR((Sqrad ^ 2) - (C3 ^ 2))’.........................................Half of Chord
’CALCULATING COORDINATES FOR TRACE CIRCLE:(needed for FREE POINT Calc)
’*********************************************************************
xTsmall = C3 * SIN(angle2) ’..............................................x Distance to trace circle center
yTsmall = C3 * COS(angle2) ’.............................................y Distance to trace circle center
xT(i%) = xCenter1 + xTsmall ’............................................x Value for Trace Circle swing
yT(i%) = yCrosshair1 + yTsmall’.........................................y Value for Trace Circle swing
’CALCULATING COORDINATES FOR SQUARE LEVER : 2 SETS OF X Y COORDINATES
’*********************************************************************
xL(i%) = xT(i%) - (W * COS(angle2))
yL(i%) = yT(i%) + (W * SIN(angle2))
xR(i%) = xT(i%) + (W * COS(angle2))
yR(i%) = yT(i%) - (W * SIN(angle2))
 
’NOW TO CALCULATE PENDULUM EXTENSIONS: x & y POINTS
’DEPENDANT ONLY ON VARIABLES w & c3 & angle2.
’*************************************************
cbig = SQR(Rbig ^ 2 - W ^ 2)
aBigx = (C3 + cbig) * SIN(angle2)’ + TAngle * (Pi / 180))
bBigy = (C3 + cbig) * COS(angle2)’ + TAngle * (Pi / 180))
xE(i%) = xCenter1 + aBigx
yE(i%) = yCrosshair1 + bBigy
 
’ADDITIONAL CALC FOR Dist2 variable
’Dist2 is the Distance between the Pivot to the EB pendulums free point
’This can be used to determine if any true curve are followed by the free point.
’08 Vertical EB prove that there ARE Only true curve Traced at the free point opposed to a Arch. 
’********************************************
Dist2(i%) = (SQR((Rbig ^ 2) - (W ^ 2))) + C3
 
 
'USE YOUR OWN LINE COMMANDS BY ATTACHING IT TO THE xL , yL , xR , yR,  Square lever co-oords
'AND FOR THE CIRCLE USE xC , yC as the Crank Swing.
'ALSO YOU NEED TO USE xT, yT as the Trace Circle Swing 
'Determine for yourself  a Main axis Line from which to offset  these Co-oords in this case the Prefered axis is Vertical. 
'END OF CALCULATION  CODE  BLOCK  ABOVE.